

Ensure Safety for Rail Projects from planning to operation

René Bambor, Business Unit Manager - Rail Services, TÜV SÜD Add value. Inspire trust.

"I want to take you on a journey"

"Rail – transport of today and future"Safe and reliable mobility

Most sustainable mode of transport

Industry drive innovations, safety and addressing passengers' comfort

Increasing railway projects, need for faster realization

Ensuring safety from planning to operation is key.

Jump on

and let's go ahead.

Different stakeholder, different expectations

Rail lifecycle: Trends and challenges

How safe is safe enough?

Safety (noun)

- "Condition of being protected from or unlikely to cause danger, risk, or injury." [Dictionary]
- "Freedom from those conditions that can cause death, injury, occupational illness, or damage to or loss of equipment or property, or damage to the environment" [MIL-Std-882C]
- 3. "Freedom from unacceptable risk." (note: risk related to human health or to the environment) [EN 50126-1]
- "Condition in which risk of harm to persons or damage to property is reduced to, and maintained at an acceptable level through continuing process of hazard identification and risk management." [ARP 4761A]

Planning and Development

PLANNING AND DEVELOPMENT MANUFACTURING AND INSTALLATION OPERATION AND MAINTENANCE MODIFICATION AND DECOMMISSIONING

Concept phase

Supplier

- Preliminary design
- Risk analysis
- Final system design
- Subcontracting
- Supplier management
- Subsystem design

Challenges:

- Right architecture & allocation of system (safety) requirements
- Handling shared/exported risks
- Feasible RAMS targets
- Handling safety-related application conditions (SRAC)
- Transparent interfaces
- Suitable quality gates

Solutions:

- Early O-ISA involvement
- Interface management
- Integral safety view
- Analyze use cases
- Focus on shared risks

Ensuring safety during Planning and Development

Real example: Subway GOA4 using CBTC/ATC system

Vehicle subsystem

Identified hazard:

 Passengers fall off moving train after untimed emergency door opening

Safety requirements:

 After emergency door switch activation door remain closed until standstill, release at v = 0

CBTC/ATC subsystem Identified hazard:

- Collision between vehicles due to running trains into occupied sections
- Safety requirements:
- Route setting ensure occupied sections set zerospeed zone around occupied section

Missing hazard on system level:

 People exiting vehicle might suffer electrocution by powered rail or hit by other vehicles (2nd line)

Missing safety requirement (vehicle to ATC):

- Immediate depowering of power rail
- zero-speed zones (2nd line or full-stop)
- Activated video surveillance

Ensuring safety during Planning and Development

Results and measures:

- Subsystems correctly faced own hazards / risks
- Use case evaluation & system level hazard identification was partly missing
- Overall-ISA was engaged at very late stage of project from System Integrator
- Missing system view, major delays and add. costs

How can this be avoided:

- Engage Overall-ISA on system level from beginning
- Focus on shared / exported risks and mitigations to operation
- Align Subsystem ISA with the Overall ISA to prevent safety gaps

00

Manufacturing and Installation

Ensuring safety during Manufacturing and Installation

PLANNING AND DEVELOPMENT MANUFACTURING AND INSTALLATION MAINTENANCE MODIFICATION AND DECOMMISSIONING

Real example:

Unintended safety brakes of tram

- Mixed mode of operation (manual & fully-automated)
- Brake-curves monitoring active in both modes (specified for automated operation)
- During testing many unintended spurious safety brakes occurred in manual mode
- High pressure for Permit to Operate

Vehicle and ATC subsystem:

- Not aligned requirement specs for different operation modes leading to design changes
- During change management many discussions if unintended safety brakes are hazards or not
- Misunderstandings on safety targets / specified reactions
- High number (>10) of safety brakes caused **increased risk for passengers**, (if not preventing accidents)

Consequences from a system safety perspective:

• **Proper risk-analysis** (integrated in Change Management) could have avoided this back-and-forth discussion

Ensuring safety during Manufacturing and Installation

Results and measures:

- System behavior not properly specified
- Testing revealed gaps, huge efforts for correction
- Consequences of safe reactions not properly evaluated on system level
- Extensive stakeholder discussions in late project phase caused further delays

Support of an Independent Assessor:

- Focus on proper change management, considering safety impacts
- Focus on shared / exported risk and mitigations
- Manage interfaces between subsystems to avoid shifting risks and responsibilities back and forth

00

Operation and Maintenance

Safety Management

Ensure Safety for Rail Projects

Responsibility takeover

Ensuring safety during Operation and Maintenance

PLANNING AND MANUFACTURING AND OPERATION AND MODIFICATION AND DECOMMISSIONING

Real example:

Inadequate operating manuals for driver

- Driver's manual handed over to operator
- Temporary instructions with some hundred compensation measures (immature vehicle)
- Driver was not trained on temporary instructions
- Authorization was granted
- Many critical situations in operation

Root causes:

- Too many technical deficiencies solved by temporary restrictions / instructions
- Human reliability reduced due to complexity
- Operator didn't follow SMS procedures

System safety perspective:

- Fixing technical deficiencies by paper is no solution
- Holistic view to systems / subsystems including "How to operate" and human behavior needed
- Understand different stakeholder interests

Ensuring safety during Operation and Maintenance

Results and measures:

- Main supplier interest vehicle authorization overruled demand for technical maturity
- Work-arounds on paper to solve deficiencies
- Human behavior to deal with complexity ignored
- Basic concept of "Safety of Machinery" neglected

Support of Independent Assessor

- Assess appropriateness of application conditions incl. manuals / instructions
- Highlight conditions and instructions with intention to close open technical issues
- Mediation of interests related to safety and reliability

 $\stackrel{\circ}{\circ}$

Modification and Decommissioning

Ensuring safety during Modification / Decommissioning

Real example:

Replacement of brake discs / pads

- Obsolescence of parts led to replacement
- OEM out of warranty
- Replacement based on dimensions, driven by costs
- No impact analysis
- Changes indicated to authority as minor

Identified gaps:

- · Vehicle brake behavior not seriously evaluated
- Impact to maintenance procedures, change intervals, installation etc. not properly considered
- Proof of safety not valid anymore

System safety perspective:

- Modification evaluated via impact analysis needed
- Including technical, operational & maintenance aspects
- Safety-related changes must follow risk management life cycle
- Entity in Charge of Maintenance processes

Ensuring safety during Modification / Decommissioning

Results and measures:

- Impacts seen from operational / practical aspect only
- · Safety impacts not properly evaluated
- Initial vehicle documentation incomplete
- Maintenance entity neither trained nor experienced in risk management procedures
- Maintenance management system not in place

Support of Independent Assessor:

- Certify maintenance management systems
- Proper impact analysis, independently evaluated
- Back into life cycle starting with design
- Reveal safety requirements to **demonstrate min.** same level of safety as without change

00

Τΰν

Safety with innovations / new technologies

Real example: Hydrogen powered train

- Designed with focus on technical risks only
- Only safety requirements related to gas tightness of pipes, pressure tanks, valves etc. considered

Identified gaps:

- Additional operational risks from maintenance, parking and refueling not seen
- Essential risks for refueling neglected (similarity assumptions from road vehicles)

System safety perspective:

- Holistic approach for new technologies and innovations
- Risk evaluation / use case analysis for entire system including technology, operation and maintenance
- Conventional risk-free situations may be different

Added value from Independent Safety Assessors

Provide ISA and O-ISA services:

- Identify gaps arising from poor interface management
- Holistic view, combining technology, operation, maintenance and human behavior
- Protect different stakeholder interests without bias
- Avoid shifting of risks and mitigations between subsystems
- Latest technological expertise ensures innovative solutions

Provide advisory and trainings:

- Risk management processes, standards, regulations etc.
- Narrow gaps between stakeholders & independent bodies
- Operation and Maintenance trainings including SMS, ECM..
- Methods, principles and risk management setup to ensure safety perspective and holistic view of staff

TÜV SÜD services in a nutshell, some examples...

- Overall-Independent Safety Assessment
- Assessment of subsystems, interfaces
- Advisory for new technologies
- Advisory for safety-related standardization / regulation

- Overall-Independent Safety Assessment
- Assessment of subsystems, interfaces and integration
- Independent V&V
- Construction supervision, quality control / safety audits

- SMS / ECM advisory and certification
- Rail-specific trainings with personal cert. program
- Comprehensive Training Operation Managers

- Independent impact analysis
- Assessment of IT security
 - ...

•

Key take-away -> Holistic safety view for a sustainable rail

We are happy to support you...

René Bambor

Business Unit Manager - Rail Services

Mobile: +49 151 20450658 rene.bambor@tuvsud.com

tuvsud.com/globalrail

Mohamad Afiq

Business Development – Rail Services Region ASEAN

Mobile +6019 334 1225 afig.samad@tuvsud.com

www.linkedin.com/in/mohamadafiqabdulsamad/